
AD-Al2 562 MISSOURI LMIV-COLW4BIA DEPT OF STATISTICS F/6 12/1
ORDER RESTRICTED STATISTICAL TESTS ON MULTINOPIIAL AND POISSON P--ETCCU)
JUN 81 R L DYKSTRA, T ROBERTSON NOOOR1-78-C-0655

UNCLASSIFIED TR-105 ML

U- 1



111
University of Missouri-Columbia

Order Re*trcted Statistical Test
on Multinomlial and Poisson Parameters:

The Stamrhaped Restriction
by

Richard L. Dykstra
Department of Statistics, University of Missouri-Columbia

Tim Robertson
Department of Statistics, University of Iowa

Technical Report No. 105
Department of Statistics June1981e

-4
Mathematical C

Sciences

81 8 06, 041



Unclassified

SECURITY CLASSIFICATION OF TNdIS PACE f*%en 0090 ffn#&fedI _____________

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE. COM.PLETING FORM

'11 REORTNUMERGOVT ACCESSION NO. 3. REIIN3CATALOG NME

105TIa 5 . -RTAP PO CO E D
rT e ai"rte Statistical Tests on. RPOT&PRDCVRO

Multinomial and Poisson Parameters: The. f Technical,4epcwt
Starshaped Restriction. 8 _____________

S. PERFORMING ORG. REPORT NUMNER

0 COTRA;XO GAM.7AJMBEA18)

Richard L. ' Dykstra' ,p1-8C05
IN&,14 0Z C0651

Tim/Robertson

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM FLEMENT. PROJECT. TASK

Dept. of Stat. Dept. of Stat. AI OKUI UBR

University of Missouri University of Iowa
Columbia, MO 65211 Iowa City, IA 52240

It. CONTROLLING OFFICE NAME AND ADDRESS PSwtx-"

Office of Naval Research /Jun*8 1
Department of the Navy 13. NuMUezi rOFP'AOs
Arlington, VA 23

14. MONITORING AGENCY NAME A ADORESS(If diifleent from Contr-oliind Office) IS. SECURITY CLASS. (of this report)

Unclassified

tIa DECL ASS FICATION/ DOWN GRADING

IS. DISTRIUUTION 57 ATEMENT (ot-f e R
Approved for Public Release: Distribution unlimited

AC

1S. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and Identify by block ntanb.,)

Starshaped ordering, Multinomial, Poisson, Likelihood ratio tests, chi-bar-
square distributions, maximum likelihood.

21. ADSJACT (Canthu. an revere elI. if necessary and Iden~tify by Week numnber)

Likelihood ratio statistics for Ci) testing the homogeneity of a collec-
tion of multinomial parameters against the alternative which accounts for the
restriction that those parameters are starshaped (cf. Shaked, Ann. Statist.

(1979)), and for (ii) testing the null hypothesis that this parameter vector
is starshaped are c6nsidered. For both tests the asymptotic distribution of
the test statistic under the null hypothesis is a version of the chi-bar-
square distribution. Analogous tests on a collection of Poisson means are

I also found to have asymptotic chi-bar-scuare distributions.

DD 0"147 EDITION OF I NOV 95 S O9SOLEtTE 9~) y
5/N010*0I- 501SECURITY CLASSIFICATION OF THIS PAGE (Whenl Vale 50V40



ORDER RESTRICTED STATISTICAL TESTS

ON MULTINOMIAL AND POISSON PARAMETERS:

THE STARSHAPED RESTRICTION

Richard L. Dykstra* and Tim Robertson

(University of Missouri, Columbia and University of Iowa)

Accession For

.... 

t I f I : 
. ", 

)

w T r i b it ! G" 
"&

Avaijl 'iJ.ity Coaes

AVail and/or -

Diet SjSecial

This work was supported by ONR Contracts N00014-78-0655 and

N00014-80-C-0321.

*This work was done while on sabbatical leave at The Un.vewrsity
of Iowa, 1980-1981.



ABSTRACT

Likelihood ratio statistics for (i) testing the homoge-

neity of a collection of multinomial parameters against the

alternative which accounts for the restriction that those para-

meters are starshaped (cf. Shaked, Ann. Statist. (1979)), and

for (ii) testing the null hypothesis that this parameter vector

is starshaped, are considered. For both tests the asymptotic

distribution of the test statistic under the null hypothesis is

a version of the chi-bar-square distribution. Analogous tests

on a collection of Poisson means are also found to have asymp-

totic chi-bar-square distributions.

AMS 1970 Subject Classifications: Primary 62F05

Secondary 62E15

Keywords and phrases: starshaped orderings, multinomial

Poisson, likelihood ratio tests, chi-bar-square distri-

butions, maximum likelihood



1. Introduction and Summary.

Shaked (1979) derived the maximum likelihood estimate of

a vector of Poisson (normal) means subject to the restriction

that this vector is "starshaped." A vector 8 = (o1,02,...,k)

is said to be lower starshaped provided
0I 1 2 k 0 with an analogous

81 2 k

restriction defining an upper starshaped vector. Starshaped

vectors arise naturally in reliability theory as well as in cer-

tain situations where finite populations are amalgamated. We

refer the interested reader to Shaked (1979) for examples of

parameter sets which might be known or suspected to satisfy

such a restriction.

In Section 2 we consider a sampling situation where the

result of each trial of our experiment must be a member of a

set of mutually exclusive events with corresponding probabili-

ties plP 2,..,pk . The maximum likelihood estimate of the

vector, p = (pIP2''''Pk), subject to the restriction that

it be lower starshaped, is derived (this sampling situation was

not considered by Shaked (1979)). This derivation is quite

direct and elegant in light of the complexity of the analysIS,

in Shaked (1979) and in light of the difficultles Involved In

the related problem of finding the maximum likelihood estimate

of £ subject to the restriction p1 kp 2  . Pk (cf. Barlow,

Bartholomew, Bremner and Brunk (1972)). In fact, proofs that

various algorithms for the solution to the latter problem
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yield the desired result are usually by induction.

In addition, asymptotic distribution theory for the like-

lihood ratio test of the homogeneity of plP2,.-.,pk against

the alternative that is starshaped and for testing that p is

is starshaped as a null hypothesis is also presented in Section 2.

Again the derivations are relatively direct. In both situa-

tions, the tail probabilities under the null hypothesis of this

asymptotic distribution turn out to be of the form

_(t) = P[X( l t]

2

where X denotes a standard chi-square variable with I

degrees of freedom. A somewhat similar distribution is en-

countered in the problem of testing homogeneity when the al-

ternative is restricted by Plk p 2 
1 ' ' " . p k  (cf. Chacko

(1966)) and for testing p1 2p 2  ... 2Pk as a null hypothe-

sis (cf. Robertson (1978) and related results in Robertson

and Wegman (1978)). Such weighted chi-square distributions

are encountered in many order restricted inference problems

(cf. Barlow et al. (1972)). They were first encountered by

Bartholomew (1959) and are usually called chi-bar-square dis-

tributions (x2).

In Section 3 we assume independent samples from each of k

Poisson populations. The analysis in Section 2 together with

the well known fact that the joint distribution of independent

Poisson random variables conditioned on the value of the sum
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multinomial, is used to derive maximum likelihood estimates

under the starshaped restriction on the parameter values.

This derivation is substantially easier than the original

derivation of these estimates by Shaked (1979). Asymptotic

distribution theory for likelihood ratio statistics used for

testing homogeneity versus starshaped and for testing star-

shaped as a null hypothesis is also presented.

2. Multinomial Problem.

Suppose we have n independent trials of an experiment,

the outcome of which must be one of k mutually exclusive

events with corresponding probabilities, p1 ,P2 ,...,pk

(e.1Pi__ =1). Our first task is to find the maximum likelihood

estimate of the vector under the restriction:

(2.1) :p + Pl+P 2+'''+Pk-1 I

1  1 2 k-l k

We define a one to one transformation of the parameter space

by introducing new parameters e1 ,o2,..,kli where

(2.2) e (i+l

J-l J'i Ji-

(p1l = J1k1 6  (l-GiJuej; i i2t39**,k-lP Pk =(l -l)

In terms of the G's the likelihood function can be written



inJlE n i+

(2.3) L(e) = i: 1 (1 e )i+l 0 0 i1

where is the relative frequency of the event having prob-

ability p1 :i =1,2,.'',k. The restriction (2.1) becomes

HI' - Gi >- i/ (i+1) : i = 1, 2, "•,k-l1.

It is easy to find the maximum of the function a(1-8)b

subject to e t c (0 &8 -1). This maximum is attained at

6 = a/(a+b) V c, where V denotes the larger of the two nuin-

bers. It follows that the maximum likelihood estimates which

satisfy H1  are given by

(2.4) i = V (i/i+l) : 1=1,2,...,k-1

wh r i - i+l.

where i (p PJ)/( .PJ) and
SJ=1J ji

(2.5) pi-- (1-16l) f- i . k-1i J=i J

with 00 = 0 and Pk = l-6kl" Restating (2.5), we have

established the following theorem.

Theorem 2.1. The maximum likelihood estimates of plP 2,..

subject to the lower starshaped restriction are given by



pi V.ji V 1~ 1 :,2,'''k-1

and

where denotes the relative frequency of the event having

probability pi"

Turning to the testing problem, let

(2.6) H0 :Pl =P 2 = ... =Pk :l/k.

We let A01 denote the likelihood ratio test statistic for

testing H0  against H 1 -H 0  (i.e., H1 but not HO) and

let T = -2 in A 01 It is convenient to write T01 in terms

of the G's as follows:

k-

(2.7) T 2Ei lt(n j j)[ln 8i -in(i/i+l)]

+ n i+l [in(l-e6i ) -ln(I/i+l)]}

Using Taylor's Theorem with a second degree remainder term, we

expand in -6 and ln(i/i+l) about bl, and expand

In(l-'i) and ln(l/i+l) about l-O. The linear terms drop

out and we obtain



(28 01 = ~ 2k 11  j 2 1 1+ i-1
2a~ 20i

1p+1 (8 -2 1 p+1 (6)2
(0 2 2 (6 i+il2,v1  2Y 1

where aIis between -61 and 6,; 0, is between 0,and

i/(i+l); Vi is between (l18G) and (1 -^01 and YIis

btatend (14~ and 1/(i+l). The law of large numbers implies

tha, uderHO 6 converges to i/i+l.

To obtain some Insight into the asymptotic power of the

likelihood ratio test, we consider a sequence of alternatives

knsatisfying H, which converges to Zwhere pt > 0 for

all I. We let En denote a random vector corresponding to

i~e. n^ is mltiomia (nIn our alternative

parameterization we have

8 i +1 -4I i+l~

and

I 1+1
F, = F.Pn,i I j=l n,j J=.j n,Y'

Somewhat surprisingly, it can be shown by conditioning on
j+l

jzl flj, ta (n,i en,i*

Since n^n is multinomial Cn,pn), it can be shown that



n - o MVN(0,) where (a is defined by
v'R(n = C. is eindb

Pi(l - Pi j

-ipi j j

(One way of showing this is to verify that the moments of

linear combinations of /-nPn i - )ni) converge to the mo-

ments of linear combinations of an appropriate MVN vector, and

then employ Theorem B of Serfling (1980) and the Cramer-Wold

device.)

Moreover, if we define the function g --(g1 ,..,gkl: Rk--Rk
-l

by i i+l

g(x) = Ex / Ex ,
1

Theorem 4.2 of Kepner (1979) implies that

-(n ) ]  -e) MVN(O,D ')

where

k-lxk

/P2 -Pl 0 .... 0

2 ( )2 (2)2 2

22
P3 p$-E pj

i 0 .. 0

k-

k 2 (k1P E 
P 1)
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Careful calculation reveals that DED' is given by

Pi+l~lJ

(2.9) = ( 1+ Pj)

1

0 , x J

so that, fortunately, we have asymptotic independence among the

4 n,i S.
If we recall that e e vwe can express the

n n,i i+1'
likelihood ratio test statistic ask-il

(2.10) 0 (n 1 (X +6 2 an i(Xn +6n )2
(2.10) T01 =i~l "i+6n'i n,- , i ni [n,i +n,+n 0]

where

)[(iI)31/2

Xn, i = fn(6n,i-e n,i ]

n,i 
n ,rn 1 + L) 1 1j

n ,i ~ ik'

(2.11) -(

ai = [+l] (1+1)3] , and
bn, =+ 02Y 2 ikJ- ni n~i

+n Pn~i+l (~)
bn', J~ n,i V n, i ik "
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Since 2n satisfies H, for all n, 6n~ k 0 for all

n,i. if 'n~ -. 6 (finite) as n --. ~ then

ni so that b --- -1 Recalling how a

nr,i' Yni and v ni' were obtained, it then follows that

an~ and bni--1 as n --* .

In this situation, X i Z,, where Z iis a n(O,l)

random variable. Using Theorem 41.9 of Billingsley (1968), we'4 have

(Xni na ~' ~iZ3 1 ,)

Then noting that the function h :R3 R 1 defined by

Ah(x,y,z) = x 2y -x 2z '[x! 0

is continuous, we may use Theorem 5.1 of Billingsley to say

(X ni+ ni) a n, - (X ni+6 n, b 2 IEXni+ ni:0

(Z 1+6 1) 2 _(Zi +6i1) 21[Z +1:r

Uz [Z+6i1) Vol]2

In the event that 6 ni it~ can be shown that a n,i is

bounded away from zero asymptotically while X niconverges
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in distribution. Thus

(X +6i )2 -(X +6 )b I pC

We have thus established the following theorem.

Theorem 2.2. If 2n satisfying H, converges to p(pj>O for all D),

and if 6 ni(as defined in (2.11)) .6~ (possibly ~)for

I =1,---,k-1, then T is distributed asymptotically as

(2.12) U NZ +k-l0 2

where Z l,*** ,Zkl are independent n(0,1) random varlables.

Of course the distribution of the random quantity in

(2.12) is very intractable, except under the null distribution

H0 (6 =0, I =1,..- ,k-1) when it becomes surprisingly nice.

To elaborate, suppose I Is a subset of (1,2,.-.,k-13 and

let EIbe the event EI= [Z I k ; E I and Z I<0; I (I].

Then, for any real number u,

P[U 2u,E 1  P[74EI Z2u .,0; 1 F I, Z1 <0; 1. (I]

P~~E z~ 2 u, Z1 ko; I EIIPP[z1 <0; I. f i

=P[E
2I Z~ 2~ kuI 0; I EI1]*(1/2) k-

2 k-l



where m is the number of elements in I. The last step fol-

lows from Lemma B on page 128 of Barlow, Bartholomew, Bremner

and Brunk (1972). Partitioning the event [U : u] by inter-

secting it with all such events, E, we obtain the expression

for P[Utu] given in the following theorem.

Theorem 2.3. If H 0  is true then

?[T T t] -l(k-1) (1 /2 )k-1 PX
2 tt] = 2(t)

imn P[01 )(k_-i

2
for all real t (X 0).

The expression (2.12) Is useful in getting a feeling for

the asymptotic power of the test compared to the usual unre-

stricted test for homogeneity of multinomial parameters. In

particular, under the conditions of Theorem 2.2, the asymptotic

distribution of -2 In A where A is the unrestricted likeli-

hood ratio (or of the usual Pearson chi-square goodness of fit

test) is the same as

k-I 2
U= (Zi+6i)

1

where Z1,...,Zk 1 are independent n(0,1) random variables.

Under H0 , U' is x 2(k-l) and hence by looking at Theorem

2.3, we see that its critical point must be substantially
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larger than for testing H0 against HI. However, as the

6i's become larger, more nonzero terms enter into (2.12), so

that U and U1 become more nearly equivalent. The smaller

critical point of the restricted test implies that its power

must be larger eventually than that of the unrestricted test.

We now turn to the problem of testing H1 as a null hypoth-

esis. Since the unrestricted maximum likelihood estimate of

o e is equal to e1, it follows directly by writing the

likelihood ratio in terms of 0 and B and expanding in

(in(l-e)) about ^i ((i-8,)) that our test statistic can be

a 2
written as T1 = -2 In A + __ _ n-

where ai is between 6 and i (and thus converges a.s. to

) and V is between 1-0 and 1-ei  (and thus converges

a.s. to 1-0.).

By employing arguments similar to those used in Theorem

2.2, we are led to the following theorem. (Note that we do not

need to restrict pn to H1 .)

Theorem 2.4. If pn converges to p and 6 n,i (as defined

in (2.11))converges to 61 (i- are possible values) for

i =1,'',k-l, then T1 is distributed asymptotically as

k-I 2
V [ 1 (Z6+ 1 ) AO]

where Z,**.,Zk 1 are independent n(0,1) random variables.
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We note that if i E > (i+1)- P then 6i i l1 p j 1 n,i"

th
In this case, the i term in (2.13) is zero arid can be

ignored, leading to the following theorem.

Theorem 2.5. If p satisfies H1  then

lim n# P[T 1 kt] = 2(t)

where m is the number of subscripts, i, such that

-l=p j =(il- i l

E11 ip; i =1,2,''',k-1. In addition,

SUppEH1 lmn 0 Pp [T1 2t] = limn# PHo [TI tt]

-2 (t)
= Xk-t1

where PH [T1 kt] is the probability of the event [T1 2 t]

computed under H0 .

We note that Theorems 2.2 and 2.4 imply that the likeli-

hood ratio tests considered here are consistent in the sense

that for p lying in the region defined by the alternative

hypothesis, the power function must converge to one.
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3. Poisson Problem.

Suppose we have a random sample of size n from each of

k Poisson populations having means ,i 2. X Shaked

(1979) found the maximum likelihood estimate of

('l,); 2,---,Xk) subject to the restriction H1 requiring

that X is lower starshaped:

(3.1) H : X 2 1 1 X k > 0.1 1 2 k

This result can be found in a straightforward fashion using the

results in Section 2 together with the fact that the conditional

distribution of independent Poisson variables, given their sum,

is multinomially distributed.

We first write the likelihood function in terms
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of the variables 01'02'''''¢k where

k k
(3.2) 0i = i/=li ; i =l,2,..',k-l and Ok = EJ =Ii

I = 0 i~k ; i =l,2,..,k-l, k = - =k iik) " The restric-

tion that X is starshaped is equivalent to requiring that

is starshaped, or

Z: 1+ 02 zt..z ( i ?-l0zk
(3.3) H 0 : 0i 02 , " (k-i) =_ i

and these restrictions do not involve 0k" The likelihood func-

tion is proportional to

knx-i nx n k

where x i is the mean of the sample from the i population;

i =1,2,---,k. Because H 1  does not restrict 0k' the two

factors in brackets may be maximized independently. Using the

results from Section 2 on the first factor and an easy analysis

involving the derivative of the second factor, we obtain the

restricted maximum likelihood estimates as follows:

(3.5) = i V (i/i+l) : i =1,2,''',k-1

where = / =1 and 0k - =I J = k (Note that

are the unrestricted maximum likelihood estimates.0l$ 2'j,.
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of 0l0 ~~Using the invariance property of maximum

likelihood estimation, we have the following theorem.

Theorem 3.1 (ShalkVd). The maximum likelihood estimates of

xl'X * ,.Xk subject to the restriction H are given by

x1

I= [~7 v ; i il. e*,k-

(3.6) and

k J~l i~l 7k=lj +

The likelihood ratio statistic for testing Ho

1 = X 2 = .. Xk against the alternative H 1-H11 can be written

in terms of the O's, as follows:

(3.7) A = (1/k)
01 k-i -nX1 ( -l \k

i~li=l i

k
If we let Sol -2 ln A 0 and let Y = nE X then given

that Y =y, the joint conditional distribution of

YO is multinomial with parameters y arid

1 1"li2/ l
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If we let Xn  satisfying H1  converge to X (.X > 0

for all i) such that

T____) -*6. (possibly
nji n n n,j j=l nj i+l ik

and let Xn,i denote the corresponding independent sample

means which occur in ) = -2 in (n) then using the Domi-

nated Convergence Theorem:

lim P( (n) ,t) = lim EP(Sn(n) tl
n -#c 01 -4co 01 n

= E[lim P(S (n) , Yn ) ]  E[P(U at)]
n -0 1

= P[U- t]

where U is distributed as in Theorem 2.2. Thus S01 is

distributed asymptotically exactly as T0 1  in Section 2 (with

Pn,t replaced by Xn,) in the 6n, 's). In particular, if

H0  is true, the asymptotic tail probabililtes are given as

in Theorem 2.3.
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Theorem 3.2. If H0 is true, then

-2

lIm n# P[S01  t] = Xk-l(t).

Let us now consider the problem of testing H1  as a null

hypothesis. The likelihood ratio A can be written

(-l nXi )nXk

since Ok -k"

If we let S = -2 in A1 , then the same type of reasoning

used in the previous argument can be applied to show that

(3.10) Jim P(S1 m t) Ji lm E(P(S1 >t jY))
n-#o) n-

E[lim P(S 1 kt IY)]

- P[V kt]

where V is defined in Theorem 2.4 and 6ni is defined as

in (3.8). It follows from (3.10) that if X satisfies Il ,

then the ith term of V goes to zero if
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j=l iJ=l

which leads to the following theorem.

Theorem 3.3. If X satisfies H,, then

n--2

where mn is the number of distinct i such that

1 i (~Y 1

jl 1J=l

Moreover

(3.11 su lm P t -2 ()(311 sp ), P[S 1  t] P H [S 1l ] Xklt
XEH n-. 0

where P H is computed under the assumption that H 0istrue.
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Note that Theorem 3.3 enables us to construct likelihood

ratio tests of a particular size asymptotically when testing

H1 versus all other alternatives. Of course (3.8) and (3.10)

assure us that our tests are asymptotically consistent in the

sense that if I is in the region of the alternate hypothesis,

the probability of rejecting the null hypothesis converges to

one as n -- .

It should be noted that even though Shaked (1979) allows

the more general starshaped ordering

2 2 3 3 k k
l Ww x /Ew z Ew x /Ewj E . Zw.x 1 /Ewj : 0,
lii 1 '1 l 1J Jl

his restriction that the sample size from the ith population

be proportional to wi effectively reduces the problem to the

one considered earlier.

4. Concluding Remarks.

F. T. Wright called our attention to the work of Shaked

(1979) after we had carried through much of the research in

this paper. Actually our original analysis neglected the

nonnegativity restriction and we termed the restriction

"decreasing on the average." More specifically we should have

termed it "decreasing on the average from the left" since
6 I++ + 2

61 + 2 k61 +6 2 +8 is not equivalent to 61+62+63
1 2 3 3
61 +6 2
1 2 0 3 (i.e., increasing on the average from the right).



21

It is clear that the restrictions increasing on the average

from the right, increasing on the average from the left and

decreasing on the average from the right can be handled by

analysis similar to that in Sections 2 and 3.

The phrase "decreasing on the average" also calls to mind

the restriction

=lH 1 (k- = lj 1,2,.-.k-1.2.i l i J~i+ J

An equivalent way of stating H is 1 -l i : e kl 1 ;2 j=lj ij=l j

i =l,2,-..,k-1. We note that the order restrictions specIfied

in H2  are less restrictive than those imposed by H1  which

in turn are less restrictive than 8 e 8+, i =l,...,k-1.

In the multinomial setting, maximum likelihood estimates of p

subject to H2  and distribution theory for testing H0  vs.

H2-H0 and for testing H 2  as a null hypothesis can be found

in Robertson and Wright (1980). Again, the asymptotic distri-

bution is a chi-bar-square.

The 10%, 5% and 1% cutoff values of X2 ( for

k =2,3,-,15 are given in Table 1.
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Table 1.

Critical values for -k-(t) = ki k-l P[X ?:t]Xk-lkt-i 2~)

k .10 .05 .01

3 2.95 4.23 7.28

4 4.01 5.44 8.77

5 4.95 6.50 10.02

6 5.84 7.48 11.18

7 6.67 8.41 12.26
8 7.48 9.29 13.31
9 8.26 10.15 14.29

10 9.02 10.99 15.29

11 9.76 11.79 16.21

12 10.49 12.59 17.12

13 11.22 13.38 18.01
14 11.93 14.15 18.91

15 12.63 14.91 19.78
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